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Abstract. How do you make sense of a graph that you have never seen before?
In this work, we outline the types of prior knowledge relevant when making
sense of an unconventional statistical graph. After observing students reading a
deceptively simple graph for time intervals, we designed four instructional
scaffolds for evaluation. In a laboratory study, we found that only one scaffold
(an interactive image) supported accurate interpretation for most students.
Subsequent analysis of differences between two sets of materials revealed that
task structure–specifically the extent to which a problem poses a mental
impasse–may function as a powerful aid for comprehension. We find that prior
knowledge of conventional graph types is extraordinarily difficult to overcome.
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1 Introduction

Imagine when reading a paper you encounter a graph, teeming with information—
surely important by virtue of the precious column inches it spans. But as you scan for
patterns, willing the author’s insight to leap off the page, you find there is something
unattainable. Like the writing of a foreign language, you see familiar symbols and
structure, yet the rules for assembling these pieces into a meaningful whole are just
outside your grasp. How do you make sense of the graphic?

As Larkin and Simon note, “a representation is useful only if one has the pro-
ductions that can use it,” [1, p. 71]. If we lack the ability to draw inferences from a
representation, then we may find it largely useless. How is it that we develop such
productions for new graphical forms, when even familiar systems (like scatter plots and
line graphs) can prove challenging to interpret [2]? In this work, we build upon
research on reading and graph comprehension to explore how readers make sense of an
unconventional statistical graph. After generating hypotheses for instructional scaf-
folding techniques through observation (Study One), we evaluate their efficacy in the
laboratory (Study Two). We find that even with explicit (text or image-based)
instructions, the influence of prior knowledge from conventional graph forms is diffi-
cult to overcome. Our results suggest that when presenting unconventional graphical
forms, effective techniques will direct readers’ attention to the salient differences
between their expectations and reality, and that designers mustn’t take for granted that
readers will notice they are dealing with an unconventional form.
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1.1 Cognitive Aids for Graph Comprehension

Owing largely to their importance in STEM education, techniques for supporting graph
comprehension have been a focus of research in the learning, cognitive and computer
sciences. The most minimal interventions involve graphical cues—visual elements that
guide attention, akin to gesture and pointing in conversation. Acartürk [3, 4] investi-
gated the influence of point markers, lines and arrows on bar charts and line graphs,
finding that different cues can lead readers to interpret a graph as depicting either an
event or process. Similarly, Kong and Agrawala [5] proposed the term “graphical
overlays” to refer to elements layered onto content to facilitate specific graph-reading
tasks. Reviewing a corpus of statistical graphs in popular media they identified five
common types of overlays: (1) reference structures (such as gridlines) (2) highlights,
(3) redundant encodings (such as data value labels), (4) summary statistics and (5) an-
notations, each aimed at reducing cognitive load for particular graph-reading tasks.

Turning to more elaborate interventions, Mautone and Mayer [6] investigated
techniques from reading comprehension to support meaningful processing of graphs in
the college classroom. In a series of experiments, they presented learners with scat-
terplot and line graphs augmented by signaling (animations to reveal components of a
graph, adding cues to highlight the relationship of depicted variables), concrete graphic
organizers (diagrams & photographs of the real-world referents of variables in a graph)
and structural graphic organizers (diagrams depicting a relationship analogous to the
one represented in a graph). They found that the type of cognitive aids provided to
learners affected subsequent structural interpretation of the graphs (measured by rela-
tional or causal statements).

Importantly however, these studies did not differentiate between prior knowledge of
the domain and knowledge of the graphs [3, 4, 6]. The cognitive aids explored in this
literature do not instruct users on how to read the graphs – the “rules” for their
representational systems. Rather, it is assumed that the reader has familiarity with the
type of graph being read. Scatterplots, time series and line graphs all rely on the
Cartesian coordinate system, serving as a common graphical framework [7]. We are
interested in what happens when presented with a graph that doesn’t rely on this
framework. Might we need a different type of scaffolding to learn a novel represen-
tational system?

1.2 Prior Knowledge and Graphical Sensemaking

Modern theories of graph comprehension posit a combination of bottom-up and
top-down processing [8]. While the design of a graph is clearly important, so too is the
nature of prior knowledge we bring to the task. When making sense of a graph, we
draw on at least two sources of prior knowledge: our knowledge of the domain, and of
the graphical form [2]. Scarcity from either source will impede comprehension in
different ways.

Limited Prior Knowledge. If presented with an unfamiliar graph, depicting infor-
mation in an unfamiliar domain, I will be unable use knowledge of one to bootstrap
inferences for the other. Consider a novice physics student reading a Feynman diagram:
without the requisite understanding of particle physics, they cannot reverse-engineer
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the formalisms of the diagram. Without these formalisms, they cannot draw inferences
about particle physics.

Limited Domain Knowledge. Alternatively, if presented with a familiar graph
depicting data in an unfamiliar domain, I might draw on my knowledge of the graph
system to learn something new about the content. If I know a straight line represents a
linear relationship, I can infer that such a relationship exists between the (unfamiliar)
variables in a line graph connected by a straight line [8]. It is this situation we aim to
optimize in STEM education. Mautone and Mayer [6] demonstrated that animations,
arrows, diagrams and photographs can all help students connect their prior knowledge
of graphs to depicted variables, improving their ability to draw inferences about the
related scientific processes. Of course, our expectations about how a graph works, if
inappropriate, can also lead to systematic errors in interpretation [2].

Limited Graphical Knowledge. We are interested in the reciprocal case: an unfa-
miliar representation depicting information in a familiar domain. Importantly, by
graphical knowledge we are not referring to knowledge of graphs in general–graphical
competency–but rather knowledge of the rules governing a particular graph form. We
reason that existing techniques for scaffolding are insufficient for this case, as the
information added to the graphs serve only to strengthen the relationship between the
graph-signs and (real-world) referents. This fails to address the learner’s scarcity of
knowledge for the representational system. If we cannot perform first order readings–
such as extracting a data value–we cannot hope to perform second order readings–like
inferring relationships between variables.

With sufficient domain knowledge, we expect that learners may be able to
reverse-engineer the formalisms governing an unconventional graph. We wish to
scaffold this process to support self-directed graph reading. As a first step, we select an
obscure graphical form using an unconventional coordinate system so that we might
shed light on the graphical framework: the foundation of the graph schema [7].

1.3 The Triangular Model of Interval Relations

Several representational systems for reasoning about time intervals have been explored
in the literature [9], due largely to their importance in data analysis across the sciences
and humanities. We have selected two informationally equivalent [1] types of time
interval graphs, each representing the start and end time, duration, and relations
between intervals.

In Fig. 1-left—the Linear Model of Temporal Relations (hereafter LM)—inter-
vals are depicted as line segments along a one-dimensional timeline running from
left-to-right. The left and right boundary points of a line segment indicate the start and
end time, respectively, while the length of the segment indicates its duration. In the
LM, the y-axis is solely exploited to differentiate between intervals, for example, by use
of a label. In this way, the second dimension contains no metric information. As a
result, intervals can be sorted along the y-axis in numerous ways (e.g. by start time,
duration, alphabetically by label, etc.). As noted by Qiang et al. [10] this polymorphism
prohibits the existence of a standard approach to visual pattern recognition with the
LM, making it ill-suited for applications in exploratory data analysis and inspection of
extremely large data sets.
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Based on work by Kulpa [9] extended by Qiang et al. [10, 11] the Triangular
Model of Temporal Relations (hereafter TM) overcomes this shortcoming by rep-
resenting intervals as points in 2D metric space (Fig. 1-right). Each point represents an
interval. In the vertical dimension, the height of the point indicates its duration. The
intersection of the point’s triangular projections (using diagonally oriented grid lines)
onto the x-axis indicate the start and end time. In this way, every interval is represented
as a unique point in the 2D graph space, and each of its elementary properties are
explicitly encoded by the location of the point.

A brief inspection of the TM by even the most experienced graph readers
demonstrates its relative obscurity. However, while the non-Cartesian coordinate sys-
tem is unconventional, the graph depicts information about a domain in which we all
share substantial prior knowledge: events in time.

1.4 The Present Studies

We are interested in what happens when experienced graph readers (undergraduate
STEM majors) attempt to interpret the TM graph. Further, we wish to develop and
evaluate a series of instructional scaffolds to support comprehension of the graph by
self-directed readers. We start by observing students using the TM graph to solve
simple questions about the properties and relations between events, and then elicit
suggestions for how to make the graph easier to read (Study One). In Study Two, we
evaluate four scaffolds inspired by these observations.

2 Study 1: Observing Learning of an Unconventional Graph

What strategies do we employ to make sense of an unconventional graph? In this
exploratory study, we observed students solving problems with the Triangular Model
(TM) graph (Part A). After a short interview, we challenged students to design
instructional aids making the graph easier to read (Part B). From these data we generate
hypotheses for how we might scaffold comprehension for novel statistical graphs.

A Linear Model (LM) Graph A Triangular Model (TM) Graph

Fig. 1. Informationally-equivalent graphs for intervals of time
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2.1 Methods

Participants. Twenty-three (70% female) English speakers from the experimental-
subject pool at a large American university (M(age) = 20, SD(age) = 1) participated in
exchange for course-credit. All students were majors in STEM subjects. Participants
were recruited in dyad pairs (9 pairs, n = 18) to encourage a naturalistic think-aloud
protocol. In cases where one recruit was absent we conducted the session with the
individual (n = 5), altering the procedure only by encouraging them to think-aloud as
though explaining their reasoning to a partner. In total, we conducted 14 observation
sessions (9 dyads, 5 individuals).

Materials and Procedure. The entire procedure ranged from 45–60 min. In Part A:
The Graph Reading Task, sixteen multiple choice questions were used to probe the
reader’s ability to use the graph to reason about the properties of and relations between
intervals. For example, a question testing the “duration” property might read: For how
many hours does event [x] last? Participants were given one sheet of paper containing
the questions and a second sheet containing a large TM graph with 15 data points1.
After delivering instructions, we started the video recording and left the room.

Upon task completion, we conducted a short interview, prompting participants to
explain how they would plot a new data point on the graph. If participants misinter-
preted the graph, we began a didactic interview, prompting students to ask questions
they thought might help them discover the rules of the graph system. We responded by
only revealing the information explicitly requested, minimizing the effect our teaching
might have on the designs produced in the next task. Once students could plot a new
data point, we proceeded to Part B: The Scaffold Design Task. We asked participants to
think about what they could do to make the graph easier to read for the next participant
and invited them to make marks on the graph.

2.2 Study One: Results

Part A. Graph Reading Task. Participants in only 3 of the 14 sessions correctly
interpreted the TM graph (M(score) = 12/16 points, (SD = 1.7), (M(time) = 19 min,
SD = 30 s). These participants correctly described the graph’s rules in the post-task
interview. In the remaining 11 sessions, participants correctly answered only 2.2
questions on average (SD = 2.1), and were unable to correctly plot a point in the
interview. Yet in these sessions, participants did persist in answering all questions,
spending about the same amount of time on the task (M(time) = 21 min, SD = 2 min).
Reviewing the artifacts participants generated gives us a window into their interpre-
tations. Looking first at the lowest scoring sessions, we noticed many cases where
participants appeared to superimpose the conventional representation for time inter-
vals–the linear model (see Fig. 1-left) – atop the triangular graph (Fig. 2-left). We
dubbed this the “linear interpretation” of the TM, which relies on participants assuming

1 Note. All materials, data and computational notebooks for data analysis are available at https://
madebyafox.github.io/Scaffolding_Graph_Comprehension
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the data points are situated in a Cartesian coordinate system with a single x and y in-
tercept. They must also infer that a point represents a moment in time, rather than an
interval, and that the interval is represented by a line segment which they must mentally
project (or physically draw) atop the graph. They must also decide which moment
along an interval the point represents. In this sense, the “linear interpretation” relies on
two kinds of prior knowledge: first of Cartesian coordinates in which a point has a
single x-intercept, and secondly of conventions for representing intervals as linear
extents, rather than points. This interpretation also requires students to ignore—or
assign no meaningful referent to—the graph’s diagonal gridlines. Once constructed,
participants could extract information from the “linear interpretation” following the
same procedure one would follow for the conventional linear (LM) graph.

Alternatively, In Fig. 2-right we see the artifact from the highest scoring session.
Participants have reinforced the triangular intersections for several points with the x-
axis. Noticeably, we do not see reinforcement of the intersections with the y-axis,
presumably because this is a convention of the coordinate system participants did not
need assistance to interpret.

Testing the Linear Interpretation Hypothesis. From our review of participants’
graph markings, as well as the procedure they (initially) described for plotting a new
data point, we hypothesized that the 11 low-scoring sessions had formed a “linear
interpretation” of the graph. To test this hypothesis, we constructed an alternative
answer key. First, we constructed a “linear interpretation” graph by drawing a vertical
intersect for each data point to the x-axis and construing this as the start time. We then
drew horizontal line segments from each point, with a length determined by the du-
ration given on the y-axis. Using this “linear interpretation” graph, we determined the
correct answer for every problem and re-scored each session. Under this alternative
answer key, the mean score for the 11 lowest-scoring sessions improved from 2.2 to 8.3
(SD = 2.7 points), while the mean score for the 3 highest-scoring sessions decreased
12.3 to 3.0 (SD = 2.0 points), supporting the hypothesis that low-scoring participants
interpreted the graph in accordance with the conventional linear model.

The lowest-scoring session shows an 
(incorrect) Cartesian interpretation.

The highest-scoring session shows a 
(correct) triangular interpretation. 

Fig. 2. Graph artifacts from lowest (left) and highest (right) scoring sessions.
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Part B. Scaffold Design Task. We evaluated the artifacts produced in response to our
prompt to make the graph easier to read, and found evidence of three instructional
approaches: adding pictorial intersections (Fig. 3a), providing annotations/examples
(Fig. 3b, c) and text instructions (Fig. 3d).

In Fig. 3a (at right) participants have drawn
attention to the diagonal gridlines and their dual-
intersections with the x-axis by darkening and col-
oring them. These participants explained the most
challenging part of the graph was realizing they had
to look for two intersections with the x-axis.

In Fig. 3b (at left) participants have annotated their
highlighted intersections. We see a partial worked
example, via the annotation “7 h” to the span for the
red interval.

In Fig. 3c (at right) we see a worked example
where participants both highlighted the intersection
and gave explicit values for a sample point on the
plot. Under the graph they added a production rule
for finding the start-time of a hypothetical point “S”,
indicating that some learners may prefer text instruc-
tions. (triangular grid faded in digital scanning)

Finally in Fig. 3d (at right) we see explanatory
text with an explicit definition of several graph
elements.

Fig. 3a. Pictorial intersections
(Color figure online)

Fig. 3b. Annotations & exam-
ples (Color figure online)

Fig. 3c. Worked example (Color
figure online)

Fig. 3d. Text instruction
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2.3 Discussion of Study One

The results of Study One suggest the Triangular Model (TM) graph is challenging for
STEM undergraduates. While the graph is elegant in its simplicity—as one participant
noted, “once you see [the triangles], you can’t (sic) unsee them”—most re-imagined the
marks on the page as components of the more conventional representation for intervals.
In interpreting this graph students invoked prior knowledge of conventions for the
domain (intervals as line segments) and graphs in general (Cartesian coordinates).
When prompted for instructional aids, students believed they could easily improve
performance of future participants by adding instructions highlighting the multiple
intersections of a point with the x-axis. Importantly, these scaffolds are substantively
different than those explored in previous literature [2–6]. These instructions are most
similar to graphical cues [3, 4], but rather than reinforcing the main argument of the
graph (e.g. local maxima/minima, salient trend, etc.) they draw attention to the structure
of the coordinate system. Both text and image instructions focus on the graphical
framework and how to perform a first-order reading, rather than reinforcing the con-
nection between the graph’s signifiers and referents.

Owing to the limited sample size and observational methods, we fall short of
explaining why some students (3 sessions) were able to interpret the graph while most
were not. In one case, an individual interpreted the graph in the very first question, but
failed to think-aloud, leaving their strategy a mystery. In the second case, the dyad pair
also developed a correct model in the first question. In the third case, the dyad read the
graph incorrectly for about half the questions before realizing their mistake and
re-solving the problem set. These outcomes could be driven by individual differences in
graphical competency, or different problem-solving strategies. Addressing this question
will require further observation with directed post-task interviews.

3 Study Two: Testing Scaffolds for an Unconventional Graph

Inspired by the instructional aids produced by participants in Study One, we designed
four scaffolds for self-directed learning: two text instructions (adjacent to the graphs)
and two illustrations (highlighting x/y intersections). The “what-text” design (Fig. 4a)
specifies the components of the graph and describes their meaning. The “how-text”
design (4b) provides a set of production rules for extracting data from the graph. In the
“static-image” (Fig. 4c), intersections are displayed for a single data point persistent
throughout the task. In the “interactive-image” (Fig. 4d), the appropriate intersections
appear & disappear when a participant hovers their mouse over any data point.

Prior work [11] has demonstrated that the computational efficiency of the TM graph
can be achieved by students after 20 min of interactive video instruction. In Study Two
we test the effectiveness of our designs by seeking to replicate these results with
scaffolding alone. Assigning each participant to a scaffold condition, we compare their
performance on both the LM and TM graphs, and subsequent ability to draw a TM
graph for a small data set. We hypothesize that: (1) scaffolding will not affect per-
formance on the LM graph, because it is conventional and relatively easy to read;
(2) learners without scaffolding (control) will perform better with the LM than TM;
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(3) learners with (any form of) scaffolding will perform better with the TM than LM
(replication of [11]). Finally, based on observations in Study One we expect that
graph-order will act as a scaffold. (4) Learners who solve problems with the LM graph
first will perform better on the TM (relative to TM-first learners) as their attention will
be drawn to the salient differences between the graph types.

3.1 Methods

Design. We employed a 5 (scaffold: none-control, what-text, how-text, static image,
interactive image) � 2 (graph: LM, TM) mixed design, with scaffold as a
between-subjects variable and graph as a within-subject variable. To test our hypothesis
that exposure to the conventional LM acts as a scaffold for the TM, we counterbalanced
the order of graph-reading tasks (order: LM-first, TM-first). For each task, we measured
response accuracy and time. For the follow-up graph-drawing task, we coded the type
of graph produced by each participant.

Fig. 4c. “static-image” displays x/y intersec-
tions for one data point

Fig. 4d. “interactive-image” displays x/y inter-
sections on mouseover

A point is an interval of time
The left intersection with the x-axis along the 
diagonal gridline is the start time
The right intersection with the x-axis along the 
diagonal gridline is the end time
The intersection with the y-axis is the 
duration. 

Fig. 4a. “what-text” specifies graph com-
ponents and their meaning

Start-time: follow the left-most diagonal 
gridline to the intersection with the x-axis
End-time: follow the right-most diagonal 
gridline to the intersection with the x-axis 
Duration: follow the horizontal gridline to the 
intersection with the y-axis
Label: the letter directly above the point

Fig. 4b. “how-text” specifies how to extract
data from the graph
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Participants. 316 (69% female) STEM undergraduates aged 17 to 33 were recruited
from the experimental-subject pool at a large American university (M(age) = 21, SD
(age) = 2), yielding approximately 30 participants per cell in the 5 x 2 design.
Materials

Scaffolds. For the first five questions of each graph-reading task, participants saw their
assigned scaffold along with the designated graph. On the following ten questions, the
scaffold was not present. Examples of each scaffold-condition for the TM graph are
shown in Fig. 4. Equivalent scaffolds were displayed for the LM graph (see
footnote 1).

The Graph Reading Task. Each graph reading task consisted of a graph (LM or TM)
and 15 multiple choice questions (used in Study One). Questions were presented one at
a time, and participants did not receive feedback as to the accuracy of their response
before proceeding. The order of the first five (scaffolded) questions was the same for
each participant, while the order of the remaining 10 were randomized. For each
question, the participant’s response accuracy (correct, incorrect) and latency (time from
page-load to “submit” button press) was recorded. Because each participant completed
the reading task once with each graph, we developed two matched scenarios: a project
manager scheduling tasks (scenario A), and an events manager scheduling reservations
(scenario B). In each scenario, an equivalent question can be identified in the other
pertaining to the same interval property/relation. For example, in scenario A the
question mapping to the “starts” property reads: “Which tasks are scheduled to start at
1 pm?”, and the correct answer consists of 2 tasks (Fig. 5 – left – tasks O & H). In
scenario B, the equivalent question reads: “Which reservations start at 8:00 AM?”, the
correct answer referencing 3 events (Fig. 5 – right – events D, C & L). For the LM
graphs, intervals were sorted in order of duration, with the longest appearing at the top
of the graph. A pilot study on Amazon Mechanical Turk using the LM graph revealed
no significant differences in response accuracy or latency between the scenarios. The
four graphs constructed for the study are shown in Fig. 6.

The Graph Drawing Task. Participants were given a sheet of isometric dot paper with
a table of 10 time intervals, and directed to draw a triangular graph of the data (“like the
triangle graph you saw in the previous task”), using the pencil, eraser and ruler pro-
vided. Isometric dot paper equally supports the construction of lines at 0, 45 and 90
degrees, minimizing any biases introduced by the paper on the features of the graph
drawn by participants.

Procedure. Participants completed the study individually in a computer lab. They
completed the two graph-reading tasks in sequence, one with a TM graph and the other
with an LM graph (order counterbalanced). Afterward, participants completed the
graph drawing task. The entire procedure ranged from 22 to 66 min.

3.2 Results: The Graph Reading Task

Performance on graph-reading tasks is a combination of response accuracy (score) and
time. Table 1 displays the mean values for score (as % correct) and time (in minutes)
for each graph across the scaffold conditions. As we found little variance in response
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time we focus our discussion on performance as judged by response accuracy. To
explore the potential influence of graph, scaffold, and graph-order on scores, we per-
formed a mixed effects ANOVA on score with graph as the within-subjects factor, and
scaffold, graph-order and scenario as between-subjects factors (Fig. 6).

Effect of Graph. We found a significant main effect of graph type on score, F
(1,297) = 97.67, p < .001. In Fig. 6 we see that across all factors, LM scores [green

Task Scheduling (Scenario A) Event Scheduling (Scenario B)
L

M
 G

ra
ph

s
T

M
 G

ra
ph

s

Fig. 5. LM and TM graphs for each scenario of graph reading task

Table 1. Mean score and response time for graph reading tasks

Mean score (% correct) Mean time (mins)

LM graph TM graph LM graph TM graph

Scaffold M SD M SD M SD M SD

none-control 73 16 46 30 8.6 2.1 11.2 3.6
what-text 74 15 59 29 9.8 2.9 11.6 3.6
how-text 73 14 58 31 9.1 2.3 10.9 3.0
static-image 73 15 57 30 9.1 2.6 10.6 3.5
interactive-img 73 13 71 23 9.4 2.6 9.9 2.6
Total 73 14 59 30 9.2 2.5 10.9 3.3
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squares] (M = 10.96, SD = 2.13) are significantly higher than TM scores [red trian-
gles] (M = 8.78 SD = 4.44), t(316) = −9.45, p < 0.001, r = 0.47, consistent with our
motivating assumption that the TM graph is more challenging to interpret.

Effect of Scaffold. We found a
significant main effect of scaf-
fold on score, F(4,297) = 4.24,
p < .05. A post-hoc t-test sup-
ports our second hypothesis,
that across all other factors,
participants in the no-scaffold
control group performed sig-
nificantly better with the LM
graph (M = 10.98, SD = 2.33)
than the TM graph (M = 6.9,
SD = 4.51), t(60) = 7.07, p <
0.001, r = 0.67. Regarding our
third hypothesis, we found a
significant interaction between
graph and scaffold, F(4,297)
= 10.03, p < .001. As pre-
dicted, scaffolds did not influence the score when solving problems with the LM (hy-
pothesis 1), but made significant improvements in score for the TM. However, none of
our scaffolds resulted in significantly higher scores for the TM relative to the LM. In
fact, post-hoc pairwise comparisons (with Bonferroni correction) on TM scores showed

Fig. 6. Mean response score by graph, Scaffold and task order LM scores (squares) remain
steady across scaffold (x-axis) and graph-order (right/left plot), while TM scores (triangles) differ
by scaffold, highest in the interactive image condition. (Color figure online)

Fig. 7. Only the interactive image scaffold was signifi-
cantly better than no-scaffold control condition.
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that only the interactive image scaffold yielded scores significantly higher than the
no-scaffold control (Fig. 7).

Effect of Graph-Order. Counter to hypothesis 4 that graph-order would act as a
scaffold for comprehension, we found no main or interaction effects for graph-order on
response accuracy. Perhaps in order to glean salient differences between the TM and
LM graphs, they need to presented simultaneously (as in Fig. 1).

Effect of Scenario. As our mixed design necessitated the use of two matched sce-
narios, we tested for effects of scenario in our statistical model. Unexpectedly, we
found a main effect of scenario on score, F(1,297) = 22.29, p < .001, and significant
interaction between graph and scenario, F(1,297) = 34.34, p < .001. When answering
questions in the “task scheduling” scenario A (M = 9.20, SD = 4.12), participants had
significantly lower scores, t(316) = –4.77, p < 0.001, r = –.26, compared to the
“events scheduling” scenario B (M = 10.52, SD = 2.97). In an online pilot we found
no significant differences in performance between the scenarios when tested with the
LM graph. To explore the source of this effect, we examined the data sets constructed
for each scenario, and in particular, the very first question students solved with the TM
graph. In the “task scheduling” scenario A (Fig. 8–left) we see that if a learner makes
the most common mistake—seeking an orthogonal intersection from the x-axis—there
is a single data point that intersects the line: an available answer. However, in the
“events scheduling” scenario B (Fig. 8—right), there is no intersecting data point.
Students who were randomly assigned to this second scenario received implicit feed-
back that they were misreading the graph if they sought the orthogonal intersect
because there was no answer to the question. We suspect this drove students to
re-evaluate their strategy, yielding significantly higher scores for the “events
scheduling” scenario.

What tasks start at 1pm? A data point inter-
sects the erroneous orthogonal projection. 

What events start at 8 am? No data points
intersect the mistaken erroneous projection. 

Fig. 8. First question for the task (left) and event (right) scenarios.
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3.3 Results: The Graph Drawing Task

The graph drawing tasks allows us how to explore how each scaffold supports students
learning the graphical framework of the TM. We expect that accurately drawing
requires deeper understanding of how the graph works, and analysis of any systematic
mistakes students make in drawing may reveal sources of difficulty in comprehension.
Following the directed approach to qualitative content analysis [12], a team of 3 raters
classified all 316 drawings first into a priori categories [triangular, linear, other] and
finally into 5 categories based on the data present in the sample: (correct) triangular,
linear, scatterplot, “asymmetric triangular” and “right-angled”. Interrater reliability was
high (a = 0.96) and disagreements were resolved through negotiation. The majority
(73%) of participants drew correct TM graphs. 17 individuals (5%) constructed LM
graphs, while 3 participants drew scatterplots with start & end time on the x/y axes
respectively. Most interesting were the two alternative triangular forms constructed by
66 (21%) individuals: right-angle triangle, and asymmetric triangles (described in
Fig. 9).

While the overall distribution of graph drawing-types was too heterogeneous to
reliable correlate with TM task performance, we did examine the performance of the
subset of participants who produced the two alternative triangular forms. TM scores for
participants who drew “right-angle” graphs were significantly lower (M = 2.3, SD =
1.98) than for participants who drew “asymmetric triangle” graphs (M = 8.55, SD =
3.73), t(27.11) = –7.36, p < 0.001, r = 0.82.

Fig. 9a. 230 students drew correct TM
graphs

Fig. 9b. 17 students drew LM graphs

Fig. 9c. 44 students drew “right-angle” graphs.
They plot duration on the Y axis and the interval as
a point, but mistakenly use an orthogonal
x-intersect for start time

Fig. 9d. 22 students plotted the vertical inter-
section as the midpoint of the interval, but the
triangles were not geometrically similar because
duration was not on the y-axis.
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3.4 Discussion of Study Two

The results of Study Two leave us with a conundrum: why were the scaffolds designed
by learners in Study One largely ineffective?

None of our designs replicated the results of Qiang et al. [11] which yielded better
performance with the TM than LM graph, though there were notable differences in our
tasks, including their use of an interactive graph interface with hundreds of data points,
and feedback in the video instruction. Setting aside the differences in performance
between the LM and TM graphs, we assessed the efficacy of scaffold designs by
looking at TM scores alone. The widely-held assertion of Study One participants that
simple text and image instructions would dramatically improve readability of the graph
were not borne out, as on average, participants who received the static scaffolds per-
formed no better than those who received (as participants in Study One) no graph
instructions at all (Fig. 7).

We suspect the source of this discrepancy lies in a hindsight bias. Once students
understand how the graph works, they cannot “unsee” it, and therefore underestimate
the strength of their prior expectations. The unexpected effect of scenario on TM scores
supports this interpretation, as students who received implicit feedback they were
reading the graph incorrectly (because there was no available answer) performed better
than those who did not (Fig. 8 right vs. left). In this way, the structure of the task
presented the reader with a mental impasse [13] where their expectations (based on
prior knowledge of Cartesian graph forms) left them with no solution, and their
attention was actively redirected to reconsidering these expectations. The role of
attention can also address why the interactive image was superior to the static text and
image scaffolds. If it is the case that a reader does not realize they are misreading the
graph (as we observed in Study One), it is easy to ignore the static scaffolds. However,
it is much more difficult to ignore a stimulus that appears every time the mouse is
moved over a data point. To critically evaluate the role of attention in our ongoing
studies we are employing both mouse and gaze-tracking to quantify the extent and
time-course of attention paid to both scaffolds and graph features.

As in Study One, the most substantial open question in this work remains the
source of individual differences. Across all conditions, we see a high standard deviation
(30% or 5 points) in score, again with some participants in the no-scaffold control able
to correctly interpret the graph. In our ongoing work we seek to address this question
with post-task interviews that prompt participants to explain their interpretation strat-
egy while viewing a screencast replay of the their problem-solving session.

4 General Discussion

While the Triangular Model (TM) graph is elegant in its simplicity, the results of our
studies demonstrate this simplicity is deceptive. Without assistance, most readers
misinterpret the graph as the conventional representation for time intervals: the linear
model. Even with cognitive aids, many students persisted in this erroneous interpre-
tation, and only an interactive image scaffold significantly improved comprehension.
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These results have implications for both the design of scaffolds and of uncon-
ventional graphs. First, when designing scaffolds one should consider the reader’s
expectations based on the conventional representation for variables in the domain. It is
from that prior knowledge that readers begin their interpretation, not from a blank-slate
(i.e. general graph schema) we might expect based on a graph’s surface features. To
overcome this, our results suggest that techniques actively directing attention to salient
differences may prove most effective. The interactive-image scaffold achieves this
through repeated, user-driven exposure to the multiple intersections of a TM data point
with the x-axis. Similarly, the mental impasse provided by the questions in our
event-scheduling scenario actively directed readers’ attention to their mistaken inter-
pretation. We are presently conducting a follow-up study testing the relative efficacy of
attention-directing explicit (e.g. interactive image) and implicit (e.g. mental impasse)
scaffolds.

When constructing unconventional graphs, a designer’s priority is the computa-
tional affordances making the new graph-form suitable to the data and task. But as we
learn from these studies, a designer should also ask, “What expectations will be
invoked by the marks on the page?” For the TM graph, we suspect it is the orthogonal
axes that drive readers to expect a single orthogonal intersection for each data point.
But there is—strictly speaking—no reason that the axes need to be orthogonal. In fact,
one clever participant in our graph drawing task produced what we believe to be a
substantial improvement upon the TM graph, where the y axis was positioned diago-
nally on the left side of the graph’s “bounding triangle”. We are presently conducting a
follow-up study to investigate alternative axis and grid designs, hypothesizing that such
diagonally positioned axes will yield significantly better performance.

In this work, we have explored only a small subsection of the total design space of
scaffolding techniques for a particular kind of unconventional graph. We expect our
conclusions generalize to unconventional coordinate systems, but that other techniques
need to be explored when employing unconventional markings. Our choice of scaffolds
was inspired by direct observation and participatory design, however, we suspect a
wider range of techniques might be effective in more instructional settings, including
explication of worked examples, or seeing the graph being drawn. While we chose to
separate our text and image scaffolds to test their differential efficacy, a combined
text/image annotation could prove effective even in static media, and is a part of our
ongoing work.

We started by reasoning that existing scaffolding techniques would be insufficient
for unconventional graphs because learners would lack the prior knowledge of the new
graph system required to make use of them. As Pinker [7] suggests, when confronted
with an unfamiliar graph form, the reader instantiates a generic “general graph
schema”. However, it seems that despite differences in surface structure, a learner’s
prior knowledge of other graph forms can actively interfere with interpretation of a new
graph. The novelty of the diagonal gridlines in the TM graph was not enough for most
learners to suspend their Cartesian expectations. To overcome this prior knowledge, we
think that successful scaffolds for unconventional graphs must not only show or tell us
how to read them, but to rather alert us that that we need to pay attention, and
reconsider our expectations in the first place.
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