
Chapter 2 
Theories and Models in Graph 
Comprehension 

Amy Rae Fox 

Abstract Graph comprehension is the act of deriving meaning from graphs, an 
activity grounded in visuospatial reasoning that develops through a combination 
of instruction and practice. What we know about the mechanisms of graph com-
prehension stems from interleaving lines of inquiry in statistics, computer science, 
education, and psychology dating back to the 1980s. In this integrative review, I 
describe how models of graph comprehension evolved in response to developments 
in cognitive theory, offering a critical commentary on how foundational theories 
build upon each other, extending rather than replacing theoretical claims at different 
levels of analysis. I illuminate the landscape of contemporary research, before 
concluding with an argument for the role of visualization psychology in supporting 
theoretical integration across disciplinary boundaries. 

2.1 Introduction 

There is a conceptual paradox at the center of research on graph comprehension. 
The reason we employ graphical displays is that—in relation to text or tables of 
numbers—they seem effortless. Deriving meaning from a graph is described as 
“seeing” the information, equated with the facile fluency of perception. But this 
effortless access obscures a murky, error-ridden reality. Correctly reading a graph is 
much harder than we think. After 40 years of empirical research and theory building, 
we have learned that our ability to interpret a graph is influenced by a multitude of 
interacting factors affecting the display, the individual, and the situation. 

In this chapter I offer a historical commentary on the development of graph 
comprehension research. I describe how theory in graph comprehension arose out of 
empirical research across disciplines and propose a role for visualization psychology 
in facilitating theoretical integration. This chapter will be useful for visualization 
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researchers looking to navigate the interdisciplinary milieu of graph comprehension, 
and students of behavioral and social sciences seeking a primer on this essential area 
of research. 

2.1.1 What Kind of Graph Is a Graph? 

The term external representation is used to indicate things in the world—subject to 
experience by human perception—that purposefully refer to other things. External 
representations can be constructed for any sensory modality and medium, though 
the visualization researcher is particularly interested in those employing graphics 
that can be seen on some surface. The text on this page is a visual external 
representation, with the letters of the alphabet functioning as symbols referring to 
sounds that you have learned to assemble into words from which you construct 
a certain understanding of what I intend to communicate. Similarly, a photograph 
is a visual external representation, referring via resemblance and analogy to the 
scene it depicts. A rich spectrum lies between these symbolic texts (describing the 
world) and analogous pictures (depicting the world). The design and interpretation 
of external representations belongs to the interdisciplinary realm of semiotics: the  
study of meaning-making (see Chap. 9). The focus of this chapter is a subset of 
external representations colloquially referred to as graphs (from the Greek graphē 
“writing, drawing”), charts, or plots: diagrams that convey relationships between 
sets of information via visual-spatial variables in a coordinate system (see [6, 62]). 
These are not to be confused with another set of representations referred to as 
“graphs”: collections of edges that join pairs of vertices (à la “graph theory; node-
link diagrams). Graphs are typically distinguished from maps which use scaled 
space to represent geographic relations. Both kinds of graphs belong to the larger 
class of diagrams: external representations that use space and simplified visual 
forms to convey relationships between their referents. Importantly, the use of these 
terms in empirical research is as fluid as the taxonomies that seek to structure them 
(see [25, 34, 53]). While the models and theories of comprehension reviewed in 
this chapter reference graphs specifically, it is reasonable to infer that the general 
purpose mechanisms of graph comprehension may also apply to the larger class of 
external representations. 

2.2 An Abridged History of Theory in Graph 
Comprehension 

As is often the case with interdisciplinary research, the study of graph comprehen-
sion arose from the needs of practice, rather than an invariable march of basic theory. 
The pioneering graphical inventions of Playfair, Minard, and Galton in the “golden
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age” of visualization were only made mainstream through inclusion in textbooks 
(e.g., [11]) and standards reports (e.g., [2]), through championing in professional 
texts (e.g., [78]) and essays in scholarly journals (e.g., [21, 45]). As the use of such 
“statistical graphics” spread, guidelines were needed for when and how they could 
be used to communicate effectively: a call for science to explain the art. 

The earliest empirical investigations were published in statistics [22, 24, 82] and 
consisted of discrete comparisons between bar and pie charts, testing a viewer’s 
performance in judging proportions. Concurrent work in educational psychology 
[85] tested secondary school students on their memory of facts learned from bar and 
line charts, pictographs, and tables. Studies of this kind were framed as empirical 
tests of guidelines offered in textbooks like that of Brinton [11] but were subject to 
methodological critiques of construct validity. In contextualizing their results, the 
authors tended to frame outcomes as properties of the representations themselves: 
a bar chart is more effective at [X] than a pie chart, while contemporary scholars 
would identify performance as arising from the interaction between the individual 
and representation. This subtle but important difference betrays that the focus 
of early efforts was on understanding the nature of the representations and their 
properties. 

These types of point-to-point and application-grounded studies would continue 
for decades, in the absence of frameworks, theories, or models to guide causal 
or mechanistic investigation. The work was published in statistics, educational 
psychology, computer graphics, and the burgeoning field of HCI. This would 
be the case until three developments in the 1980s paved the way for a more 
coherent, additive body of research to unfold. First, Jaques Bertin’s seminal work 
A Semiology of Graphics was translated from French to English by WJ Berg 
(under the supervision of Howard Wainer) in 1983. Bertin was the first to offer 
a concise language and structure for decomposing the questions we might ask 
about what a graphic is and how it might work. Second, post-cognitive revolution, 
substantial theories connecting visual perception to higher order cognition had been 
published in cognitive science—notably Marr [52] and Ullman [80]. Finally, the 
“mental imagery debate” was well underway, which saw leading cognitive scientists 
debating the nature of mental representation. This focuses on representation spurred 
interest in external representation and in particular how graphics are leveraged for 
problem solving and communication (e.g., [46]). 

In the sections that follow, I describe a progression of theoretical development 
that has shaped the trajectory of graph comprehension research—work that directly 
addresses the fundamental question: how are humans able to read graphs? Our 
focus will be on the elaboration of general theory—accounts of the mechanisms 
through which our interaction with statistical graphics unfold—rather than individ-
ual empirical contributions. We will see examples of theory reasoned from personal 
experience, appeal to logic, and theory reasoned from experimental evidence. 
A substantial body of theory has been developed in information visualization 
and education that addresses the application of visualization and diagrammatic 
representations more broadly, though (cognitive) theory in graph comprehension 
can be construed as its foundation, the backbone of investigations exploring specific
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phenomena observed within those interactions. Questions like what kind of graph 
is most effective for decision-making? or how can we help learners correctly 
interpret a graph? rely on general purpose mechanisms of graph comprehension, 
just as questions of effective linguistic communication rely on the underlying 
mechanisms of reading and speech comprehension. Figure 2.1 summarizes early 
theoretical contributions, including a number of general taxonomic grammars and 
computational efforts that are not discussed in further detail. 

The reader will notice that our understanding of graph comprehension did not 
progress via development of competing models and theories. Rather, research has 
unfolded as a progressive elaboration of a vast problem space, with works that 
shed light on disparate aspects or tasks, and others that expand on prior theory 
at different levels of detail, iterating rather than refuting. Half of the challenge is 
deciding what questions need to be answered, and here lies the power and difficulty 
of such interdisciplinary inquiry. 

2.2.1 A Semiology of Graphics: Bertin 

To utilize graphic representation is to relate the visual variables to the components of the 
information. With its eight independent variables, graphics offers an unlimited choice of 
constructions  for  any  given  information.  (. . . )  The  basic  problem  in  graphics  is  thus  to  
choose the most appropriate graphic for representing a given set of information. — Bertin 
[6, p. 100] 

Jacques Bertin (1918–2010) was a French cartographer, born in the suburbs of 
Paris and educated in the School of Cartography at the Sorbonne. An esteemed 
map-maker, he contributed to new methods of cartographic projection as the head 
of research at France’s National Center for Scientific Research (CNRS) [58]. Yet his 
most widespread legacy would be the first and most far-reaching effort to provide a 
theoretical foundation to the design of information graphics, first offered in the text 
Sémiologie Graphique [5]. 

Bertin’s volume resists concise summary,1 though its most oft-cited concepts in 
contemporary writing, are the visual variables and levels of organization, which 
taken together form a table of perceptual properties: a heuristic for information-
visual mapping (Fig. 2.2a). Bertin organized the tools at our (external) representa-
tional disposal in terms of space (two planar dimensions: location on a surface) 
and the visual (retinal) properties along with marks positioned within the space can 
vary: size, value, texture, color, orientation, and shape. In short, the visual variables

1 Any attempt to summarize the 400 page volume would be too brief, and this author is convinced 
that although widely cited, the depth of Bertin’s intellectual contributions is underestimated on 
account of opaque linguistic constructions. Bertin also contributed theory on levels of reading 
[p. 141], stages of processing[140], functions of graphics[p. 160], and information processing[p. 
166]. The motivated reader is strongly encouraged to give “Part 1. Semiology of the Graphic Sign-
System” a close reading [6]. 
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Fig. 2.1 Early influential theories, frameworks, and models in Graph Comprehension [32, 49, 59, 
60, 76]
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Fig. 2.2 Four contributions ranking perceptual accuracy of visual-spatial encodings. Bertin (a) 
was reasoned phenomenologically, Cleveland and McGill (b) derived from experimental studies 
with quantitative proportion judgments, which (c) Macklinlay [51] extended for nominal and 
ordinal data reasoning from existing psychophysics studies, not empirically validated in the context 
of graph comprehension
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offer eight channels into which information can be mapped. Bertin argued these 
channels have varying capacities for adequately representing different aspects of 
information: a correspondence between the nature of the information and perceptual 
requirements for discerning it in graphical form. In an orthogonal scheme, he posited 
four levels of organization that govern what about some information we might 
seek to perceive. Selective perception involves discerning categorical belonging; 
associated perception grouping like instances; and ordered perception discerning 
step-wise order and quantitative perception discerning the absolute value of an 
instance or numeric ratio between instances. Bertin asserted that to map data to a 
visual variable, the level of organization of the data must correspond to the capacity 
of the visual variable (Fig. 2.2a). Any mismatch is a source of “graphic error” [6, p.  
64]. 

Bertin envisioned a unifying framework that could govern the design of all kinds 
of graphics. A CNRS colleague reflected that it was the exposure to hundreds of 
representations from different scientific domains—brought to Bertin for advice— 
that endowed him with the sort of global perspective required to write a text 
as comprehensive as Sémiologie Graphique [7]. In modern parlance, we would 
say Bertin offered a structured design space for mapping information-to-graphical 
marks. Though it is important to note that these ordered mappings were inferred 
from a combination of logical reasoning and perceptual experience rather than 
experimental evidence. Bertin’s treatise is partially descriptive: structuring his 
observation of the components of graphical communication, and prescriptive: offer-
ing guidelines for how and when certain mappings should be made. In justification 
of the levels of organization assigned to each variable, Bertin offers a test, a sort 
of phenomenological self-check (or to the researcher, suggested experimental task) 
that should convince the reader. In this way, the classification of visual variables 
can be read as a set of hypotheses for controlled psychophysics experiments. The 
continued influence of Bertin’s work should remind us of the value of the kind 
a priori theorizing required to construct such a theoretical framework. He did not 
conduct experiments or build models to explain data, but rather imposed a coherent 
logical structure on a disorganized set of phenomena growing rapidly in importance. 
Though perceptual experiments would follow, Bertin’s visual variables still stand as 
the most common starting point for information-graphic mapping in visualization 
design. His work is widely cited in the pioneering research in computer graphics 
and information visualization, as well as the psychological studies of graphical 
perception that would begin in earnest in the 1980s. 

2.2.2 Elementary Structures in Graphical Perception: 
From Cleveland and McGill to Simkin and Hastie 

We do not pretend that the items on our list are completely distinct tasks; for example, 
judging angle and direction are clearly related. We do not pretend that our list is exhaustive;
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for example, color hue and texture (Bertin 1973) are two elementary tasks excluded from 
the list because they do not have an unambiguous single method of ordering from small to 
large and thus might be regarded as better for encoding categories rather than real variables. 
Nevertheless the list . . . is a reasonable first try and will lead to some useful results on graph  
construction. — Cleveland and McGill [16, p. 532] 

The Semiology of Graphics would not be published in English until 1983, 
and as graphic displays of information became prevalent in American statistical 
journals in the early 1970s, calls were made for more systematic inquiry. A “theory 
of graphical methods” was needed [21, p. 5] in order to overcome the state of 
“dogmatic and arbitrary” design guidance of the time [45, p. 29]. William Cleveland 
and Robert McGill were statisticians at Bell Labs when they answered this call, 
publishing a series of empirical studies in the Journal of the American Statistical 
Association (JASA) which they described as theory for the relative accuracy for 
a set of elementary perceptual tasks readers perform to extract the values of real 
variables from statistical graphs [16]. In subsequent years, Cleveland and McGill 
refined their terminology, replacing perceptual tasks [16] with graphical-perceptual 
tasks [17], basic graphical judgments [18], and finally, elementary codes [19], with 
influential publications spanning venues of statistics, HCI, and popular science. 
Claims made in their initial 1984 work were tested by additional experiments 
and deeper engagement with contemporaneous theories of vision, resulting in the 
much refined 1987 publication ranking accuracy of an expanded set of elementary 
codes (Fig. 2.2b).2 These codes describe channels available for mapping quantitative 
information to graphic form. In this sense, the authors re-articulated the visual 
variables described by Bertin [5, 6] and further ordered them according to human 
accuracy in making quantitative relational judgments. Cleveland and McGill’s 
variables do not match those of Bertin and, however, are admittedly neither 
exhaustive nor mutually exclusive [16, p. 532]. One explanation for this discrepancy 
is their having conceived of the codes on the basis of their personal experience with 
statistical graphs, while Bertin set out to theorize a structure that could account for 
the visual-spatial properties of all graphic marks on 2D surfaces. 

Cleveland and McGill’s approach was partially deductive—structured a poste-
riori from personal experience and perceptual theory (e.g., [74]) and inductive, 
generalizing from reviews of psychophysical experiments (e.g., [4]), and their own 
original studies. It is perhaps most accurate to characterize their studies as tests of 
Bertin’s hypotheses for the appropriate visual variables for quantitative perception. 
The experimental task asked participants—presented with two marked graphic 
components—to indicate “what percentage the smaller is of the larger” (p. 539), 
an operationalization of Bertin’s test for quantitative perception: “ask the reader the 
value of the larger sign if a value of one is attributed to the smaller sign” [6, p. 69].

2 Nonetheless, the more preliminary 1984 publication remains the most widely cited of their works, 
with nearly eight times as many citations as the 1987 elaboration [as reported by Google Scholar 
and Web of Science, January 2021]. This observation reinforces the importance of tracing the 
intellectual history of theoretical works to find their most mature form and should serve as a 
warning against cherry-picking references. 
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While Bertin reasoned that only the planar dimensions (spatial location) and size 
can adequately communicate quantitative information, Cleveland and McGill give 
us the relative accuracy of ten encodings for the same task. Their experimental data 
support Bertin’s hypothesis that spatial location (e.g., position along common scale, 
position along non-aligned scales) can carry this information most accurately. If 
length is imputed as the size variation of a line [6, p. 71] and area the size variation 
of a point, then the data support Bertin’s conclusions about the size variable, but not 
in relation to direction (Bertin’s orientation for line) or angle (potentially construed 
as shape). There is enough discrepancy suggested in the empirical results to warrant 
further scrutiny of Bertin’s criteria for judging a variable as applicable to a particular 
level and of the experimental tasks themselves. 

Four years later, Northwestern University psychologists David Simkin and Reid 
Hastie offered JASA a contextualization of Cleveland and McGill’s elementary 
codes, under a framework of information processing psychology [72]. Simkin and 
Hastie emphasized that performance of graphical perception depends not only on 
the way information is encoded but also on the judgment tasks performed by the 
human beings for whom the graphs are intended. Building upon Follettie [26], they 
differentiated between measurement, discrimination, proportion, and comparison 
judgments (Fig. 2.3a). It is important to note that all of Cleveland and McGill’s 
studies used proportion judgments. Follettie, and later Simkin and Hastie, brought 
awareness to a whole new range of judgment tasks for which statistical graphs 
are used. Most importantly, they demonstrated that choosing a graphic mapping 
for a variable of data should not only depend on the data type (Bertin’s level of 
organization) but also on the judgment task the designer wants the reader to perform. 
They offered empirical demonstrations of the interaction between elementary codes 
and judgment tasks (e.g., comparison judgments were most accurate with simple 
bar charts (position along common scale) while proportional judgments were most 

Fig. 2.3 Schematic diagram of Simkin and Hastie’s theorized Elementary Mental Processes, 
adapted from (1987)
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accurate with simple pie charts (angles)). Moving beyond encoding, they theorized 
four elementary mental processes that could—in an algorithmic sense—explain 
relative error and response rates across tasks (Fig. 2.3b). The elementary mental 
processes can be construed as visual data extraction steps: ordered in procedures 
that are executed by the perceptual system in order to accomplish a judgment task. 

Over the course of the 1980s, the use of statistical graphics in publishing and 
data analysis surged with the development of software packages that made simple 
visualizations accessible for personal computer users. The cross-fertilization of 
empirical research between perceptual psychology and statistics demonstrated how 
demand for design recommendations can drive applied research questions that in 
turn inspire basic science research. Though the decade began with a focus on 
mapping information to visual forms, it would end with sophisticated hypotheses 
about how such mappings would interact with tasks, governed by perceptual rules, 
to elicit comprehension. 

2.2.3 The Rise of Process Theories 

Prior to 1980, there had been very little systematic research on the psychology of 
graph comprehension [84]. Over the course of the 1980s, methods and theories from 
cognitive psychology began to permeate the community in statistics concerned with 
graphical perception. Simkin and Hastie, notably, were psychologists, though they 
published their seminal work in the Journal of the American Statistical Association 
(JASA) rather than a journal of applied cognition or perception. Their contribution 
stood in direct conversation with the earlier work of Cleveland and McGill in the 
same venue. In [43], psychologist Stephen Kosslyn published in JASA a review of 
five books on charts and graphs, including Bertin [6], Tufte [77], and Chambers [13]. 
Rather than a straightforward critique however, Kosslyn offered a thorough primer 
on relevant concepts from cognitive psychology contextualized with respect to graph 
reading. He provided a sketch of contemporary visual information processing [52] 
and the distinction between short- and long-term memory [3, 47] before addressing 
the extent to which the practical guidance offered by each book comported 
with aspects of cognitive theory. Although its citation count pales in comparison 
to the aforementioned works, the importance of Kosslyn’s contribution cannot 
be overstated. In this cross-disciplinary fertilization, he offered—like Bertin— 
a structure for thinking about the scope of what questions might be asked of 
graphical performance. He shared a simple (conceptual, process) model of visual 
information processing (Fig. 2.4) in which graph perception would be situated. To an 
application-focused community of statisticians using graphics, he brought a concise 
summary of relevant psychological constructs. While previous efforts focused on 
structural questions of encodings and tasks, Kosslyn drew attention to the way that 
graph reading unfolds as a process.
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Fig. 2.4 A process description of visual information processing, adapted from [44]. The same 
figure appeared (without linguistic annotation of the important characteristics) in [43] 

But Kosslyn’s influence would not end there. In [44] he published an analytic 
scheme for deconstructing graphs3 into constituent parts, which could then be 
analyzed at the levels of: syntactics (configuration of marks), semantics (the 
meaning that arises from configurations), and pragmatics (conveyance beyond direct 
interpretation of symbols). This contribution was more structural than procedural, 
offering a schema for evaluating graphs with respect to acceptability principles 
reasoned from cognitive theory. But in doing so, he would make reference to a 
forthcoming publication from his former graduate student Steven Pinker, one that 
would go on to stand as the most widely cited theory of graph comprehension. 

2.2.3.1 A Theory of Graph Comprehension: Steven Pinker 

While experimental psychologist Steven Pinker is most widely recognized for his 
popular science books on language and human nature, he got his start in the late 
1970s as a doctoral student studying visual cognition with Stephen Kosslyn at 
Harvard. His chapter “A Theory of Graph Comprehension” in the book Artificial 
Intelligence and the Future of Testing would influence research on the design 
and function of visual-spatial displays across psychology, education, and computer 
science for decades [62]. In fact, the ideas were influential before publication, with 
earlier versions of the theory cited via MIT technical reports from the early 1980s. 

Pinker’s theory consists of a series of computational processes that propagate 
representations of information across components of a theorized human cognitive 
architecture (Fig. 2.5). He proposes that graph interpretation begins with construc-
tion of a visual array: a relatively raw, minimally processed representation of the

3 Kosslyn makes a distinction between charts (specifying discrete relations between discrete 
entities) and graphs (a more constrained form, requiring at least two scales associated via a “paired 
with” relation). 
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Fig. 2.5 Three versions of Information Processing accounts of Graph Comprehension. Italic 
annotations in blue indicate clarifications, and red indicates changes from prior models. In reading 
these diagrams, it is important to recognize they represent processes, not components. The boxes 
in Pinker, for example, indicate representations of information, not theorized cognitive structures, 
like working memory or executive control. The diagrams are not schematics for the structure of a 
cognitive system, but schematics of how information is processed, and care must be taken to avoid 
inadvertently reifying them into component structures, which might serve an implementation level 
of analysis
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information made available to the nervous system via patterns of intensity on the 
retinas. The visual array is then encoded into a visual description: a symbolic, 
structural representation of the scene in a form more efficient for computation with 
knowledge in memory. A MATCH process then compares the visual description 
with the contents of memory in order to select the correct graph schema—a sort of 
placeholder indicating the structural relation of information for that particular class 
of graph. Once instantiated, information from the visual description is structured 
according to the relations of the selected schema. By this point, the external 
representation of the graph has been transformed into an internal representation 
in some structured, symbolic form that can be interrogated (searched) in order 
to extract information. Pinker uses the term conceptual question to refer to the 
information the reader wishes to derive from the graph and conceptual message 
the information that is actually extracted. A message assembly process searches 
the instantiated graph schema for information to translate to the form of the 
conceptual message. But processing capacity limitations prevent all the information 
from being automatically translated to messages. Rather, the interrogation process 
searches the graph schema for information matching the conceptual question. If it 
is found, message assembly takes over. But if not, interrogation can traverse the 
prior stages of representation (the visual description, then visual array) until the 
desired information is found, a top-down search that may require re-encoding the 
visual array. Finally, Pinker appeals to a general class of (logical, mathematical, and 
qualitative) inferential processes that operate on the conceptual message in service 
of answering the conceptual question. 

Pinker’s approach was deeply situated in the tradition of information processing, 
expressing an orientation toward a computational theory of mind. His explana-
tion functions at Marr’s algorithmic level of analysis—specifying representations 
and procedures for transforming them [52]. He offers an exceptionally detailed 
account of the properties of the representations he proposes (especially the visual 
description) and how they comport with cognitive theory in vision, memory, and 
attention. The 1990 publication is not an easy read, and it is my personal opinion 
that its scope is often misunderstood and contribution inadvertently reified as its 
diagrammatic representation of information processing.4 Figure 2.5a is adapted 
from Pinker’s Figures 4.14 and 4.19 which he characterizes as “representing the flow 
of information specified by the current theory” [62, p. 104]. The diagram depicts 
the order of representations and names of processes that transform them but fails to 
adequately describe re-encoding of the visual array (by re-attending to the graph) 
or the timecourse of decay of any representation based on the capacity limits of 
short (i.e., working) memory (e.g., [62, p. 89]). This leads to the misconception 
that Pinker does not address the role of working memory or proposes that an entire

4 Just as we are drawn to graphs of empirical results, we are drawn to diagrams of theoretical 
offerings. The readers are warned against assuming that a diagram entirely represents a theoretical 
account, and writers encouraged to explicitly describe the representational role of diagrams in the 
scope of their theory. 
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graph is encoded in a single linear process. Rather, it is more appropriate to construe 
the diagrammatic representation as a snapshot of the flow of information through 
a single iteration of a bottom-up (perceptually driven) loop. We are similarly left 
wondering “where” in the mind his representations exist. This is not explicitly 
defined in the process diagram nor the text, but it can be reasonably inferred that 
all posited internal representations exist in short term (i.e., working) memory, as 
this is where processing would occur in the context of the cognitive theories he 
references (with the exception of the uninstantiated graph schema, likely in long-
term memory). 

Most importantly, justification for the theory rests on a single proposition: that 
graph comprehension exploits general purpose cognitive and perceptual mecha-
nisms. Pinker’s chapter was not the culmination of decades of empirical experimen-
tation with graphs, but rather, the application of contemporaneous theories of vision, 
memory, and attention to the phenomenon of graph comprehension. This statement 
is not offered in critique, but in observation of the variety of ways that theory is 
developed. In this case, refutation rests on change to theories of vision, attention, 
and memory or evidence that graph comprehension is sufficiently different from the 
phenomena used to construct those theories to warrant special purpose cognitive 
mechanisms. 

2.2.3.2 A Construction-Integration Model: Shah and Colleagues 

An alternative to refuting a theory is refining it, by elaboration (specifying detail) or 
contextualization (situating in larger scope). In the late 1990s and early 2000s, Priti 
Shah and colleagues arguably did both: zooming out to describe the iterations of 
information processing when comprehending a graph and zooming in to elaborate 
the influence of “top-down” factors. 

While prior experimental work focused on the perceptual aspects of graph 
comprehension, Cognitive Psychologist Priti Shah’s mid-1990s dissertation work 
emphasized the role of cognitive processes in graph comprehension. Though con-
temporary Cognitive Science resists a precise delineation between perception and 
cognition, in graph comprehension a distinction is typically drawn between sources 
of information. Perception—information arriving via the senses—is referred to 
as “bottom-up” processing, while prior knowledge and computation over internal 
representations is referred to as “top-down” processing. Like Pinker, Shah, and her 
colleagues reasoned that graph comprehension would make use of general purpose 
cognitive processes rather than some special graphics engine in the mind. Drawing 
inspiration from Walter Kintsch’s well-regarded Construction-Integration Theory 
[41], Shah elaborated how the processes of constructing meaning with a graph 
might proceed in the same fashion as constructing meaning from text or linguistic 
discourse. 

Along with Patricia Carpenter, Shah first drew attention to the timecourse of 
information processing when reading a graph [12, 67]. Prior perceptual accounts 
tended to emphasize holistic pattern recognition processes that allow the readers
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to make the sort of quick proportional judgments used in studies of graphical 
perception. Carpenter and Shah employed more complex tasks, asking the readers 
to describe graphs and answer comprehension questions. Performance on these 
tasks, accompanied by measurements of eye fixations, revealed a more iterative 
procedure was taking place: one that involved a serial identification of visual 
chunks, followed by inferences and reasoning, repeated until the task goal had been 
accomplished. Along with evidence of differential task performance based on prior 
knowledge of semantic content, their studies provided support for the claims that 
(1) successful graph interpretation depends not only on appropriate information-to-
graphical encoding but also on prior knowledge and skill of the graph interpreter and 
(2) graph comprehension is an iterative, multi-stage process. Publications in 2002 
drew more strongly from CI Theory, characterizing the timecourse of processing 
in terms of two phases: an initial construction phase, where visual chunks activate 
relevant prior knowledge and are integrated into a coherent representation, and an 
integration phase, where inferences are made over the (coherent) representation 
(Fig. 2.6a) [30, 68]. The phases follow in order, though can be repeated, and 
integration can be followed by further construction, as necessary (Fig. 2.6b). 

The astute reader will ask how Shah’s Construction-Integration Model relates 
to Pinker’s [62] Theory of Graph Comprehension. The answer depends on one’s 
interpretation of each text. In a 2005 review, Shah and colleagues describe their 
model as differing from Pinker’s in that it specifies that prior knowledge (and in turn, 
expectations) is activated by the encoding of visual chunks, which serve as a top-
down constraint on inferential processing [69]. Pinker also describes the activation 
of prior knowledge, though in slightly different terms. Specifically, the MATCH 
process “searches” prior knowledge in order to instantiate an appropriate schema 
(prior knowledge structure) for the type of graph being perceived [62, p. 101]. In 
this way, the prior knowledge of graph type is activated by the (symbolic) visual 
description of the graph (the encoded visual chunk). Since inferential processes 
act on the instantiated graph schema, this prior knowledge serves to constrain 
interpretation. What Pinker does not explicitly describe is the activation of prior 
domain knowledge, or any understanding the reader has about the information being 
represented by the graph, though a generous interpretation would be that he includes 
this constraining influence under the scope of inferential processes (p. 103), a 
catch-all term to describe all of the higher order processing (logical, mathematical, 
judgments, and decisions) that one performs on the instantiated graph schema. If 
Shah’s coherent representation is equated with Pinker’s instantiated graph schema, 
then the two accounts are congruous. They are consistent in appealing to general 
purpose mechanisms, to describing a serial process of encoding, some form of 
integration with prior knowledge, and inferential processing. They both posit the 
existence of internal representations: Pinker gives a specific account of a plausible 
form of these representations, Shah requires only that they exist, leaving the CI 
model with less explanatory power for mechanisms, but greater robustness to change 
in the perennial debate on the nature of internal representation. It is this author’s 
reading that these two accounts of graph comprehension are highly compatible, 
serving to elaborate different aspects of graphical processing at different levels of
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Fig. 2.6 A Construction-Integration Model of Graph Comprehension, derived from the text 
description in [30, 68]. (a) describes two distinct phases of comprehension: the first involves 
encoding visual chunks, while the second involves higher order cognitive processing over the 
working internal representation. (b) describes how integration follows some number of iterations 
of construction, before processing is either complete and ready for integration 

specificity. While Pinker attends to a computationally plausible encoding structure 
for graphical information, Shah attends to the more global timecourse of processing 
and iterations of “perceptual” and “cognitive” efforts. They both offer testable 
predictions about how factors of the graphical display and the graph reader should 
differentially influence task performance.
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2.3 The Landscape of Contemporary Research 

Statistical graphics have never been more prevalent than they are today in scientific 
inquiry, business operations, or popular media. With such a wealth of applications, 
it is a good time to be a Visualization Psychologist but is not easy to study the 
psychology of visualization because as an applied area of inquiry, both students 
and scholars alike must navigate an opaque disciplinary milieu. The readers can 
find relevant empirical research in venues as distinct as journals and conferences 
of science or math education, learning science, information and library science, 
cognitive, educational, perceptual or (general) experimental psychology, vision 
science, cognitive science, and of course computer science—where the conference 
triad InfoVIS, SciVIS, and VAST claim some epistemic authority of the subject 
matter by virtue of naming rights. 

In the two decades since Shah’s Construction-Integration model, we have not 
seen similar overarching, general process accounts of comprehension. Rather, the 
researchers across these fields have progressively elaborated a complex ecosystem 
of factors that influence performance on graph comprehension tasks. We can orga-
nize these factors into three groups: those pertaining to the display, the individual, 
and the situation. 

Display Factors The research on display characteristics tends to center on deter-
mining the most ideal encoding of information, a question of design. Bertin offered 
the first experientially deduced guidelines for mapping data to graphic marks [5, 6],5 

some of which were experimentally tested using relational judgment tasks and 
ranked by Cleveland and McGill [16, 19] and further extended by Mackinlay [51] 
who ranked encodings according to theorized perceptual accuracy for communicat-
ing quantitative, versus ordered, verses categorical data (see Fig. 2.2c). If humans 
were perceptual computers, this might be the crux of visualization psychology. But 
we are, of course, more delightfully nuanced creatures. Contemporary research has 
demonstrated that effectiveness of encodings depends not only on the capacity of 
a particular type of mark to carry a certain type of information but also on what 
about that information the designer wants the reader to perceive most effortlessly. 
Ensemble encoding, for example, relies on characteristic performance of the visual 
system to inform encoding choice when the goal is to facilitate, for example, 
identification of an outlier, versus recognition of a statistical mean, or apprehension 
of clusters within the data [75]. Design choices within a particular encoding strategy 
are nuanced as well, as evidenced by research on the use of color. Color hue has been 
shown to be particularly effective for encoding data for nominal or absolute value 
judgments, while color brightness is superior to hue when encoding the same data 
for relative judgments [10, 55]. The plot thickens—design choices become more 
complex—when visualizing more than one variable and the interactions between

5 The oft-overlooked footnote to these heuristics is that the rankings are meant to apply when the 
reader’s task is an “elementary reading” (extracting a specific value). 
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encoding strategies need be considered. Smart and Szafir recently demonstrated 
that the shape of a graphic mark significantly influences perception of color and 
size [73]; whatever the designer’s most informed intentions, their efforts can be 
thwarted by interactions between decisions they make. Similarly, visual saliency 
(how “attractive” an area is to the eye) has been shown to influence how humans 
attend to visual stimuli [38]; though recent efforts to computationally reconcile 
bottom-up saliency models top-down “cognitive” models have proven ineffective 
at predicting gaze behavior [48]. While display characteristics were the focus of 
the earliest research in graph comprehension, they receive no less attention in 
modern research efforts. Designers need practical guidance on when and how to 
use animation [8, 79] and 3D [68], how to use signals or instructions to augment 
a display and scaffold comprehension [1, 28, 42, 54], and how to use interaction 
most effectively [61, 66]. Since the time of Cleveland and McGill, research on 
display characteristics has become increasingly nuanced, revealing more factors that 
influence how a display should be designed and the interactions between them. 

Individual Factors Research on individual differences, or factors that give rise 
to differential performance with the same graphic display, is most common in 
cognitive and educational psychology and learning science. As Carpenter and Shah 
argued, “individual differences in graphic knowledge should play as large a role 
in the comprehension process as does variation in the properties of the graph 
itself” [12, p. 97]. But what is meant by graphic knowledge? In empirical work, 
graph knowledge is tightly entwined with graph reading abilities and expertise. 
The terms graphicacy, graphical literacy, graph sense, graphical competence, and 
representational competence are used throughout the literature in psychology and 
education to refer to a reader’s ability to understand (and potentially create) infor-
mation displayed graphically. If graph comprehension is the act of deriving meaning 
from a graph, then graphicacy is its educational flip side: the ability to perform a 
graph comprehension task. Some have treated this ability as a foundational step in 
cognitive development, akin to numeracy and literacy [31]. Others treat the ability 
as a practice, implicating the importance of experience and socio-cultural influences 
[64, 65]. In education in particular, the researchers have pursued general learner 
characteristics that might serve as pre-requisites or predictors of these graphing 
abilities, including mathematical ability [23], working memory [12], and spatial 
reasoning [81]. Ulrich Ludewig’s recent doctoral dissertation offers a thorough 
reconciliation between perspectives of graph comprehension and graphicacy [50]. 
It is slightly easier to differentiate between ability and knowledge with respect to 
specific graphs, for example, domain knowledge of the information represented 
in a particular graph, and knowledge of that particular representation’s graphical 
formalisms. The act of graph reading requires that we use our knowledge of a 
graph’s formalisms to perform some task (e.g., extract a value, detect a trend), 
thereby “learning” something about the domain. In my own research, I have 
demonstrated that this procedure is not reciprocal. It is much more difficult to use 
prior knowledge of a domain to “reverse engineer” understanding of a graphical 
formalism, such as may be required to understand an unfamiliar or unconventional
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type of graph [28, 29]. A reader’s understanding of the concepts represented in a 
graph has been shown to guide not only the reader’s interpretation of the display [63] 
but early perceptual processing as well [68]. In some cases, a reader’s expectations 
seem to “inoculate” them from true relations presented in the data or lead them to 
over or underestimate the magnitude of relations. Conversely, domain knowledge 
has been shown to support comprehension by making the readers more likely to 
ignore “noise” in data [86]. More recently, Jessica Hullman and colleagues have 
explored the role of prior beliefs [37, 40] and even judgments of expectations of 
others [36] on graph interpretation. Taken together, the research on characteristics 
of individuals has provided strong evidence for “top-down” influences on graph 
comprehension. 

Situational Factors Factors that change comprehension performance of an individ-
ual with a particular display depending on the situation are the least structured, thus 
least understood pieces of this factorial puzzle. Affect (emotion) and motivation 
clearly influence human performance of any task, and although these are charac-
teristics of an individual, we classify them as situational because they are more 
situationally variable—in the context of a repeated measures study, for example— 
than the relatively stable6 factors like prior knowledge or ability. Task is the most 
studied situational factor, though it is at present a hierarchical concept poorly 
operationalized across the literature. The term “task demand” is used to indicate 
a variety of contextual factors, from a relatively low-level step of information 
extraction (i.e., a micro-step in a larger process, such as identifying a location of 
interest in a graph), to a specific task or goal provided to a reader in an experiment 
(e.g., extract a value, compare two points, characterize a trend), to the context 
of some cognitive activity (e.g., analyzing data, making a decision, forecasting, 
solving a problem), and to the communicative intent of the designer (e.g., to inform, 
educate, entertain, persuade, etc.). In the beginning, there was but a single task: 
Cleveland and McGill’s proportional judgments [16, 19]. Folettie, followed by 
Simkin and Hastie, elaborated further judgments (measurement, discrimination, and 
(non-proportional) comparison) [26, 72]. Bertin also addressed tasks, proposing 
three “levels of reading” [6, p. 141]. Other tripartite classifications have been 
proposed in the same vein, all structuring how much of the depicted information 
the reader need attend to, and how explicit or precise their response should be 
[5, 6, 23, 31, 83]. In their application of ensemble encoding theories to visualization, 
Szafir and colleagues offer a parallel taxonomy of four tasks-types that require 
visual aggregation [75]. These can be partially but not entirely mapped onto the 
extant tripartite structures. The most complete deconstruction of the concept of 
task can be found in Brehmer and Munzner’s, “Multi-Level Typology of Abstract 
Visualization Tasks,” which surveyed an impressive volume of prior task frame-
works in computer graphics and visualization, visual analytics, human–computer 
interaction, cartography, and information retrieval [9]. A fruitful undertaking for

6 Variability, of course, depends on the scope of time under consideration. 
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visualization psychology would be to extend this typology to include the tripartite 
classifications that grew out of education, the lower level tasks elaborated in vision 
science, and higher level “communicative context” that is evident in the structure 
of the field of visualization itself [27]. A strong underlying assumption of much 
research in graph comprehension (and visualization writ-large) is that the graph 
designer’s goal is to clearly communicate, “the truth” of some data to the reader. 
Thus, the graph should be maximally informative and minimally difficult—the 
graphical equivalent of Grice’s maxims for communication. But research in learning 
science has taught us that sometimes difficulty is desirable. Perhaps if my graph is 
for learning, I might encode data differently so as to scaffold a reader’s process of 
discovery and more deeply engage with the data. Alternatively, if the context of my 
communication is persuasion, I might use more signals to direct reader’s attention 
than I would if the context were exploratory analysis. The role of communicative 
context is seen structurally through the emergence of specialized workshops at the 
IEEE VIS conference but has not yet been systematically investigated across a full 
range of communicative tasks. My own theoretical intuition—reasoned from design 
experience and engagement with the literature—is that situational factors are those 
that present mediating or moderating influences on other individual and display 
characteristics, at either the time of design or comprehension. 

A primary challenge facing designers and researchers alike is the sheer number 
of factors found to influence comprehension and the fact that they are typically 
studied in limited clusters, inconsistently operationalized between studies and 
across disciplines. This makes it difficult to conceive of the complex interactions 
that may exist between factors and how to go about constructing nuanced guidelines 
for designers. The most comprehensive summaries of factors can be found in 
[31, 33, 70] and [35], which features a concise set of empirically grounded principles 
for display design that would make a useful addition to the wall of any graph 
designer. 

2.4 What Remains to Be Discovered 

The good news is that “the state of our (sub) discipline is strong.” The bad news is 
that it is difficult to navigate and even more difficult to integrate. In the two decades 
since the last publication of a general process theory of graph comprehension [68], 
the march of empirical research has only quickened, offering insight into factors 
that affect graph comprehension, but in forms too piecemeal to be fruitfully and 
consistently applied. There are myriad open questions to be answered, from how 
exactly factors interact to influence performance to how performance is expressed 
in different forms of cognitive activity: decision-making vs. problem solving, 
forecasting, learning, or creative construction. We need to explore our boundaries: 
how does interaction with the narrowly defined class of “graphs” compared to the 
broader class of diagrams or external representations, in general? (see [14, 15] for  
thorough treatments). And our field too must address the challenge of traversing
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“lower levels” of explanatory analysis: there is a tremendous gulf of explanation 
between conceptual models of graph comprehension and understanding of how 
these processes are enacted in the body. 

Hegarty [71] and more recently Padilla [56] have convincingly argued for the 
importance of cognitive models in guiding visualization research. Hegarty suggests 
they are useful for predicting the effectiveness of designs and informing design 
decisions. Padilla argues that cognitive models can be used to promote innovation 
and evaluate validity of empirical research designs. In sum, they can bridge an 
important gap and presuming they are communicated in an appropriate venue, well-
articulated models can help ensure that the “state of the art” in basic research is 
available to guide applied efforts in design and instruction. But what kinds of models 
do we need, and what makes a model cognitive? 

Those seeking easy answers to these questions will fall quickly down a philo-
sophical rabbit hole. Models in science come in all shapes and sizes, with differing 
levels of analysis and varieties of explanation. In the social and behavioral sciences 
alone, one finds component and structural models, conceptual models, computa-
tional models, and task-analytic and mathematical models. Models differ in what 
aspect of a phenomenon they explain (e.g., structures, relationships, processes), 
how they are justified (e.g., by phenomenological, experimental or task-analytic 
empirical evidence, by logic or appeal to reason), and the way they are represented 
(conceptually: typically via words and diagrams or computationally: via math and/or 
computer programs). The importance of clearly conceptualizing and subsequently 
articulating the scope and purpose and form of a model cannot be overestimated, as 
the failure to do so can have tragic consequences for the intellectual trajectory of a 
field. 

Take, for example, [62] Theory of Graph Comprehension. Setting aside for the 
moment that it is characterized as a theory and not a model,7 a quick inspection of 
its diagrammatic representation (Fig. 2.5a) will reveal no mention of memory. Does 
this mean that Pinker believed memory was not involved in graph comprehension? 
No, it means that the reader needs clarification on what aspect of the phenomenon 
Pinker’s model explains: a propagation of representations and the processes that 
transform them. Close reading of the accompanying text reveals what was likely 
obvious to readers at the time: all of the representations and processing take place in 
some form of memory. Pinker might have chosen to represent this in the diagrams 
by locating the representations (boxes) inside other graphics representing memory 
structures. This would have been advantageous for subsequent theorists looking to 
position their own ideas in relation to his but would also have changed the type of 
model, from the flow information processing to the flow of information processing 
and component structures—taking on an additional Marrian level of analysis [52]. 
In applying Pinker’s model to a specific cognitive activity (decision-making), 
Padilla and colleagues have done well to clearly articulate the role of memory,

7 Theories are typically treated as superordinate to models, though their exact relation is a topic of 
debate in philosophy of science. 
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as well their interpretation of the construct of memory itself [57], implicating 
a multiple component conception where “a multicomponent system (. . . )  holds  
information temporarily and mediates its use in ongoing mental activities” [20, 
p. 1160]. While these details may be superfluous for those keen to apply the model, 
they are absolutely essential for the ongoing intellectual dialogue expressed via 
works of scholarship that move our science forward. Imagine next year a ground-
breaking study is published in a journal of experimental psychology that questions 
the multicomponent conception of working memory, supporting a rival account 
with implications for how visual attention is directed. Changes to the underlying 
constructs on which a model or theory rests should necessitate its re-evaluation, no 
different from the need for testing and upgrading software when the libraries on 
which they are built mature. 

The obvious difficulty is that constructs are transient, under-specified, and cer-
tainly not versioned like packages of code. Too often the precise conceptualization 
of constructs is held as tacit knowledge instantiated in encapsulated research labs, 
propagated through limited networks via the exchange of students and postdoctoral 
scholars.8 Too little space is allocated in our written scholarship to descriptions 
of what we specifically mean by the terms we use, a symptom of a drive toward 
innovation and novelty over depth of explanation. I propose that in theoretical 
scholarship we should strive to be a little more like academic philosophy, where 
precision and justification in language is not only valued but demanded. We should 
be novel in our applications, but religiously rigorous in our theory. Models and 
theories should exist in direct dialogue with those that come before, explaining 
exactly how and why they differ and offer sufficiently impactful differences to be 
worthy of inclusion in the scientific canon. 

In this onerous challenge stands a role for visualization psychology: as a mediator 
between disciplines (computer science, psychology, and education) and between 
professions (basic and applied research, design, and instruction). As a community, 
visualization psychology can position itself at the intersection of these goal-driven 
efforts and moderate the construction of reference models, intended to integrate 
theory across disciplines and levels of analysis that is specifically related to our 
phenomena of interest. We need not be concerned with explaining precisely how 
memory or attention are instantiated by the body but should take responsibility for 
maintaining enough awareness of the progression of those basic theories, so we can 
apply and as needed update our own models of how such cognitive phenomena drive 
the performance of graph (and visualization) comprehension.

8 see Kaiser [39] for a fascinating intellectual history of this phenomenon with respect to dialects 
of Feynman diagrams. 
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