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Abstract 

How do you make sense of an unconventional graph? Building 
on research demonstrating that prior knowledge of graphical 
conventions is difficult to overcome, we reconstrue graph 
reading as an insight problem. We hypothesize that imposing a 
mental impasse during a particular type of graph reading task 
will improve comprehension by inducing a sense of 
puzzlement, prompting learners to reconsider their 
interpretation. We find support for this proposal in a between-
subjects experiment in which participants presented with an 
impasse-formulated version of graph reading questions are 
significantly more likely to correctly interpret a graph featuring 
an unconventional coordinate system. We characterize the 
differential patterns of mouse movements for learners between 
conditions and discuss implications for the use of novel 
graphical forms in science communication.   
 
Keywords: graph comprehension; diagrammatic reasoning; 
insight; problem solving; representation; external 
representation; information visualization; mouse tracking 

Introduction 
The adage, “a picture is worth ten thousand words,” surely 
applies to graphs. But what about a graph you don’t know 
how to read? As Larkin and Simon note, “a representation is 
useful only if one has the productions that can use it,”	(1987, 
pg. 71). If we lack the ability to draw inferences from a graph, 
it is rendered useless. How is it then, that we develop such 
productions for new	graphical forms? 

Techniques for supporting graph comprehension have been 
a focus of research in the learning, cognitive and computer 
sciences for the past two decades. The most minimal 
interventions involve “graphical cues”: visual elements that 
guide attention, akin to gesture and pointing. Acartürk (2014) 
investigated the influence of lines, arrows and point markers, 
finding that—used appropriately—such cues can help readers 
interpret the emphasis and temporal scope of a graph in 
alignment with a designer’s intention. Kong and Agrawala 
(2012) surveyed the use of “graphical overlays” finding that 
reference structures (e.g. added gridlines), redundant 
encodings (e.g. data value labels), highlights, summary 

statistics, and annotations, are all commonly used to reduce 
cognitive load for particular graph reading tasks.  Drawing 
inspiration from the literature in reading comprehension, 
Mautone & Mayer (2007) successfully demonstrated that 
animations, diagrams and drawings could help geology 
students connect the features of graphs to their geological 
referents. Each of these techniques serves to reinforce the 
semiotic connection between a graph, the world, and the 
reader’s understanding, or to guide attention to information 
designers wish to emphasize. Importantly however, the 
techniques explored in this literature do not support learners 
in discerning how to read the graphs: the “rules" for their 
representational systems. Rather, it is assumed that the reader 
already has some familiarity with the type of graph being read 
(e.g. scatterplot, line graph, bar chart). In this way, the 
literature fails to differentiate between two types of prior 
knowledge brought to bear on a graph reading problem: 
knowledge of the domain, and knowledge of the graphical 
formalism.  

In recent work (Fox & Hollan, 2018) we have taken up this 
challenge by investigating self-directed comprehension of an 
unconventional graph. In our paradigm, learners answer 
simple graph reading problems about a familiar domain—
events in time—using an obscure graphical formalism. In an 
observational study, we found that readers struggled to make 
sense of the graph, misinterpreting the coordinate system as 
Cartesian. In a subsequent experiment, we evaluated four sets 
of instructional scaffolds aimed at overcoming the Cartesian 
misconception. We found that only an interactive version of 
the graph was effective for most learners. It seems that 
learners’ expectations for the graphical formalism were so 
strong, even explicit text or image instructions failed to alert 
them to erroneous interpretations.  

We argue this can be viewed as a sort of “graphical 
fixedness.” Akin to Duncker’s classic candle problem (1945), 
the learners in our previous studies were fixated on the 
conventional functions of the tools at their disposal: the 
marks on the page, and their assumptions about how axes and 
gridlines are meant to function. In the present work, we 
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reconceptualize our graph reading task as an insight problem. 
We test the hypothesis that intentionally inducing a state of 
puzzlement in learners—posing a mental impasse—will 
improve their ability to extract information from a simple 
unconventional graph.   

Background 

Graph Comprehension 
Process models of graph comprehension describe an 
integration of top-down and bottom-up processing (Shah, 
Freedman, & Vekiri, 2005). Following the information 
processing tradition, these models invoke the concept of a 
schema: a structured representation of knowledge in long 
term memory that guides processing of new information in a 
“top- down” fashion (see Alba & Hasher, 1983; Anderson & 
Pearson, 1984). A number of theories describing graph 
comprehension have posited the existence of a graph schema 
that guides an individual’s interpretation on the basis of their 
prior knowledge of similar external representations 
(Freedman & Shah, 2002; Pinker, 1990; Tabachneck-Schijf, 
Leonardo, & Simon, 1997).  

Unsurprisingly, there is no consensus on the format or 
content of graph schemata. One important question that has 
been addressed is what features of a stimulus trigger 
activation of a particular graph schema. According to the 
“invariant structure view” certain general characteristics are 
shared across a number of graph types that then rely on a 
shared schema (Peebles & Cheng, 2003). Ratwani & Trafton 
(2008) proposed that the structural components of a graph 
that represent basic concepts and operations for extraction—
the graphical framework—may be that invariant structure. In 
a scatterplot, for example, the graphical framework includes 
the x and y axes. From this formulation, one can predict that 
bar, line and scatterplot graphs (all relying on a Cartesian 
coordinate system) might invoke a single graph schema, 
while pie charts (relying on a polar coordinate system) might 
invoke a different schema. It is unclear what (if any) schema 
might be activated in order to comprehend a novel 
representation. Pinker (1990, p. 105) theorizes that upon 
encountering a novel graph, a reader will instantiate a 
“general graph schema”, likely based on a combination of the 
graph’s coordinate system and most predominate graphical 
forms (e.g. points, lines, bars, etc.) The exact mechanism of 
construction for this general schema is unknown, but Pinker 
suggests it may be related to the cognitive processes that 
represent abstract concepts like space and the movement of 
objects within it.  

Prior Knowledge and Graphical Sensemaking  
While the marks on a page invoke our prior knowledge of 
graphical formalisms, the context of the marks activate our 
knowledge of the domain (Shah & Hoeffner, 2002). We argue 
that scarcity of each type of prior knowledge impedes 
comprehension in different ways.  
 

Limited prior knowledge. If presented with an unfamiliar 
graph depicting information in an unfamiliar domain, you 
will be unable to use knowledge of one to bootstrap 
inferences for the other. Imagine you are a novice physics 
student reading a Feynman diagram: without some 
understanding of particle physics, you cannot reverse-
engineer the formalisms of the diagram. Without these 
formalisms, you cannot draw inferences about particle 
physics. 
 
Limited prior domain knowledge. Alternatively, if 
presented with a familiar graph depicting data in an 
unfamiliar domain, you might draw on your knowledge of 
that graph type to learn something new about the content. If 
you know that a straight line represents a linear relationship, 
you can infer this relationship between unfamiliar variables 
connected by a straight line. It is this situation that we aim to 
optimize in STEM education. To this end, Mautone & Mayer 
(2007) demonstrated that animations, arrows, diagrams and 
photographs can all help students connect their prior 
knowledge of graphs to represented variables, improving 
their ability to draw inferences about related scientific 
concepts.  
 
Limited prior graphical knowledge. Here, we are interested 
in the reciprocal case: an unfamiliar representation depicting 
information about a familiar domain; perhaps that strange- 
looking graph you saw in your favorite academic journal. 
Importantly, by “graphical knowledge”, we are not referring 
to knowledge of graphs in general (graphicacy), but rather 
knowledge of the rules governing a particular graphic form. 
Can you figure out how to read the graph, if you know enough 
about the domain? (Test yourself! See Figure 1)  
 
Reverse Engineering Formalisms. If the typical function of 
graphs is to use their formalisms as vehicles to learn 
something about the data (i.e. the domain) they represent, is 
the reverse also true? With sufficient domain knowledge, can 
readers reverse-engineer the formalisms governing a graph?  
Our data suggest this reciprocity of does not exist (Fox & 
Hollan, 2018). Despite extensive domain knowledge and 
personal experience with time, learners failed to correctly 
interpret the formalism of our graph with an unconventional 
coordinate system. Explicit instructions (text and images) 
were ineffective in supporting this reverse engineering, 
suggesting the need for a different scaffolding approach.  

Problem Solving & Insight 
In our earliest observational study with the Triangular Model 
graph (Figure 1), the vast majority of participants made the 
“Cartesian mistake”: misinterpreting the graph as a Cartesian 
scatterplot (Fox & Hollan, 2018). However, for the few 
successful outliers, their production of the correct 
interpretation was accompanied by a protracted struggle, a 
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sudden clap of their hands and ecstatic exclamation, “Oh! 
That’s how it works!” 

What we observed were moments of insight. This insight 
came during the study debrief when we gave the learner 
feedback that their answers were incorrect. In some cases, 
this feedback alone was sufficient to produce a moment of 
insight. According to Ohlsson (1992), insight results when 
one breaks free from an impasse: “a mental state in which 
problem-solving has come to a halt; all possibilities have 
been exhausted and the problem-solver cannot think of any 
way to proceed” (pg. 4). But unlike traditional problems in 
the insight literature, the state of impasse in graph 
comprehension is not readily apparent. We must therefore 
craft the state of impasse to intentionally draw a learner’s 
attention to their own misconception. The function of our 
feedback in the verbal debrief was to alert the learner to the 
fact they had made a mistake. While we cannot provide 
verbal feedback as a passive scaffold, we can indicate to 
learners that they’ve made a mistake by anticipating their 
mistaken response, and designing the graph reading question 
to exploit this error: relying on the convention that a multiple-
choice question should have at least one response.  

An Unconventional Graph: The Triangular 
Model of Interval of Relations  

 

 
This line of research requires a very special stimulus: one that 
represents information about a familiar domain but is 
sufficiently obscure to be unrecognizable by most learners. 
We selected the Triangular Model graph (Figure 1) to depict 
information about schedules of events using a novel 
coordinate system. It has an informationally equivalent 
analogue, the Linear Model which, as the conventional 
external representation for intervals of time, is the basis for 
many scheduling artifacts including Gantt Charts. Both 
models indicate the start and end time, duration, and relations 

between intervals, which we present to participants as “events 
in time.”   

Based on work by Kulpa (2006) extended by (Qiang, 
Delafontaine, Versichele, De Maeyer, & Van de Weghe, 
2012) the Triangular Model (hereafter TM) represents 
intervals as points in 2D metric space (Figure 1). Each point 
represents an interval of time. In the vertical dimension, the 
height of the point indicates its duration. The intersection of 
the point’s triangular projections (using diagonally oriented 
grid lines) onto the x-axis indicate the start (leftmost) and end 
(rightmost) times. In this way, every interval is represented 
as a unique point in the 2D graph space, and each of its 
elementary properties are explicitly encoded by the location 
of the point. Although the graph’s computational efficiency 
is best realized with a large number of data points, and tasks 
that require judgement about the relation between intervals 
(e.g. “starts-with”, or “during” relations), first order readings 
(i.e. reading the start, end or duration) are readily available 
and directly reveal the reader’s interpretation of the 
coordinate system. (See Qiang et. al (2012) for a thorough 
review of the computational efficiency of the Triangular 
Model, and elaboration of use cases for which it is preferable 
to more conventional interval graphics.) 

A brief inspection of the TM by even the most experienced 
graph reader demonstrates its relative obscurity. However, 
while the coordinate system is unconventional, the graph 
depicts information about a domain in which we all share 
substantial prior knowledge: events in time.   

The Present Study 
Results of two prior studies (Fox & Hollan, 2018) give us 
reason to suspect that conventional graph knowledge may 
hinder comprehension of unconventional representations. In 
the case of the TM graph, Cartesian expectations for the 
structure of the coordinate system interfere with our ability to 
follow perceptual cues provided by the graph’s diagonal 
gridlines. In the present study, we test the hypothesis that 
constructing a mental impasse will improve comprehension 
of this unconventional graph.  

Methods 
 
Participants and Design. Sixty (55% female) undergraduate 
STEM majors at a public American University participated 
in exchange for course credit (age: 18 - 33 years). We utilized 
a between-subjects design with two groups and one 
independent variable (scaffold: none [control] vs. impasse). 
Participants were randomly assigned to an experimental 
group, yielding 30 students per condition. Prior to analysis, 
data from six participants were excluded based on their 
failure to correctly answer an attention check question.  

 
Procedure. Participants completed the study in person, 
seated at a desktop computer. After a brief introduction, they 
were randomly assigned to an experimental condition and 
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completed the Graph Reading Task, after which they received 
a short debrief. The session lasted approximately 30 minutes.   
 

 
 

Materials. The Graph Reading Task consisted of a sequence 
of fifteen trials, each featuring a TM graph and multiple-
choice question (Figure 2) about the temporal relationship 
between data points in the graph (i.e. “Which event(s) start at 
11am?  At what time does event B end?) Learners responded 
by clicking a checkbox corresponding to the data point(s) 
they wished to select. Trials were presented one at a time 
without feedback, in the same order for both conditions. 
Learners could not skip ahead nor return to previous 
questions. To assess the stability of student strategies over 
time, the first five trials included the assigned scaffold 
condition (none-control or impasse), while the following ten 
trials were identical (none-control). Questions were identical 
for both experimental conditions; however, the data sets 
rendered in the graph were slightly different for the first five 
trials. This allowed us to construct impasse problems with 
minimal differences between conditions. For each question in 
the non-impasse (control) condition, there was always a data 
point in the position where the participant would search if 
they interpreted the graph as Cartesian (Figure 3—left). 
Alternatively, in the impasse condition, the learner would 
find no data point in the expected position (Figure 3—right). 
For the final ten trials learners saw the same graph and 
questions. See Figure 3 inset for a detailed description of the 
impasse structure.  

Figure 2. Sample stimulus 
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Data and Analysis. For each participant, we calculated a 
cumulative comprehension score [0-15], which served as the 
dependent variable. For further exploration of learner 
strategies, we integrated a JavaScript-based service 
(Mouseflow) to record all mouse-movements made by 
participants during the experiment session. Comprehension 
data were analyzed via inferential statistics, while mouse data 
were subject to exploratory qualitative analysis.  

Results  
 
Performance Accuracy. The mean comprehension score 
across the sample (n = 54) was approximately 6 points with 
a standard deviation of 0.68, and values ranging from 1 to 
15 (max) points. On average, participants in the impasse 
group had higher scores (M = 7.6, SD = 5.2) than those in 
the non-impasse control group (M = 3.9, SD = 4.2), yielding 
a statistically significant difference t(49.7) = -2.8, p = 0.006; 
a moderate-sized effect r = 0.37. 

 
Mouse Tracing Behavior. While raw comprehension scores 
can indicate whether learners correctly interpret the graph, 
they cannot reveal the strategies employed to answer the 
questions. To explore the mechanisms behind our results, we 
captured mouse tracing data. Similar to eye tracking data, 
mouse tracing provides an imperfect proxy for visual 
attention of the learner during the problem-solving session. 
This is a particularly rich source of insight for our graph 
reading problems as learners frequently used the mouse to 
navigate across the graph, the mouse acting like fingers 
tracing down or across gridlines. Of course, not all learners 
utilize the mouse to the same extent, and so we limit the 
present analysis to qualitative observation of gestalt patterns 
of graph traversal.  

Figure 5 contains a set of heatmaps generated from raw 
path and dwell time data depicting the mouse movements of 
all participants on the first question of the Graph Reading 
Task. In the left column, we see data for learners in the 

control condition, and on the right, the impasse condition. 
The top row of heatmaps were generated from only those 
participants who correctly answered the question, while the 
bottom row from participants with a variety of incorrect 
answers. Visual inspection of these heatmaps reveal that 
across both conditions (top row), learners who correctly 
interpreted the coordinate system traversed the graph in a 
similar fashion, with the most prominent patterns following 
the relevant diagonal gridlines. Inspecting those with 
incorrect answers (bottom row), we see dramatically different 
patterns of tracing across conditions. While those in the 
control condition (bottom left) follow the expected Cartesian 
projection, learners in the impasse condition (bottom right) 
exhibit no single discernible pattern. While these learners did 
not arrive at the correct answer, their tracing behavior may be 
an indication of puzzlement.  

Discussion 
The essence of functional fixedness, according to Ohlsson 
(1992), is that the experience of using an object in a particular 
way lowers the probability of finding a solution in which one 
uses the object in a different way. The strength of our 
association of the function to the object sets the strength of 
fixedness. In this light, we can see how substantial experience 
with common graphical forms serve to fix our expectations 
of axes, and coordinate systems in general, toward a 
Cartesian interpretation. The results of this study support our 
hypothesis that constructing a problem to present a learner 
with a mental impasse yields significantly better performance 

Figure 5. Mouse movement as heatmap for all 
participants, question #1 

 

Figure 4. Results for graph reading task, by condition 
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on the unconventional graph reading task. Of course, not all 
graph reading tasks need be construed as insight problems. 
Most often the challenge we face concerns second-order 
readings—the inferences to be drawn from available 
information— and there is a close relationship between the 
nature of a graph-reading task and the suitability of the graph 
design (Shah & Hoeffner, 2002). However, we argue that 
these readings of trends and relationships between data points 
are unlikely to be made if the reader does not understand the 
nature of the graphical formalism itself, and this is where 
insight comes into play.   
   Lockhart, Lamon & Gick (1988) characterize difficulties in 
problem solving as a failure to access available information. 
This certainly seems applicable to the difficulties we observe 
with the Triangular Model graph where the reader need only 
perceive and recognize the importance of the diagonal 
gridlines to extract information from the graph (first-order 
readings). Lockhart et. al. propose that learners must often 
reconceptualize a problem in order to solve it, and simply 
giving students information may not be enough to achieve 
this effect. Presenting information in a form that induces 
puzzlement is significantly more effective in facilitating 
conceptual transfer and subsequent problem solving. We 
argue that the puzzlement induced by finding ‘no available 
answer’ in our impasse condition worked by leaving learners 
with no recourse but to reconsider their strategy (or give up). 
This conclusion is further supported by learners’ failure to 
interpret this graph when provided with explicit information. 
While the text and image scaffolds in (Fox & Hollan, 2018) 
did not improve performance with the TM graph, a simple 
manipulation of the availability of answers to the first 
problems in a scenario for this study did.  

We expect this technique should generalize to other 
representations with unconventional coordinate systems, 
though it is unclear whether the same attention-directing 
mechanisms would be appropriate for forms utilizing 
alternative markings. This is one of several open questions 
we are presently pursing. In ongoing analysis of mouse 
tracing data, we are exploring the strategies employed by 
learners in the impasse state and how they may reflect 
learner’s graphical intuitions. In particular, we’re interested 
in the strategies employed by learners in the impasse 
condition that provide non-Cartesian, but nonetheless 
incorrect responses. How are these learners reasoning about 
the graph elements, and does their behavior remain consistent 
after the scaffold phase (first 5 questions) when the remaining 
10 questions have possible Cartesian answers? Based on 
ongoing analysis of the time course of response accuracy, we 
suspect that for impasse to be effective, the learner must 
confront the impasse in the initial phase of graph 
interpretation—when the graph schema is instantiated. In 
ongoing work, we address this question by varying the timing 
of impasse vs. non-impasse questions with analysis of the 
time course of correct and incorrect responses. We are also 
investigating which components of the design and layout of 

the graph are most influential in triggering a Cartesian 
interpretation, by manipulating the layout and saliency of 
axes, gridlines, and rotation of the figure in graph space.  

While we hope this line of research will shed light on the 
elusive graph schema and how we develop graphical 
knowledge, the most immediate implications of our findings 
address the presentation of graphics in publications like this 
one. As communicators of science, we face an inevitable 
tension between communicating in what we believe to be the 
most revealing or expository fashion, and the way a 
community has come to expect. This makes innovation 
difficult. Nonetheless, the popularity of information 
visualization as a research area means that novel graphical 
forms are ever more present in our discourse. If you choose 
to utilize an unconventional representation in a traditional 
publication format, posing a carefully designed question (in 
perhaps, the figure caption) may aid the motivated reader to 
persevere in correctly reading the new graphic, and 
discovering your insights.  
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